
MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 111, JULY, 1970 

Trigonometric and Gaussian Quadrature 

By C. J. Knight and A. C. R. Newbery 

Abstract. Some relationships are established between trigonometric quadrature and 
various classical quadrature formulas. In particular Gauss-Legendre quadrature is shown 
to be a limiting case of trigonometric quadrature. 

In an earlier paper [1] it was noted that there exist trigonometric and exponential 
analogs of Gaussian quadrature formulas. We now extend those results to show 
several interesting features. We find that Legendre and trapezoidal rule quadrature 
result from the trigonometric formula as a certain parameter takes special values. 
We also study in some detail a case in which the roots of an orthogonal polynomial 
tend to coalesce. The development is based on transforming the integrand into 
Gaussian form. The problem then reduces to finding a polynomial belonging to an 
orthogonal set. An algorithm is proposed for constructing the polynomial's coeffi- 
cients numerically. 

We will restrict our consideration to a quadrature formula of the form 

(1) j f(x) dx = E jif(x;) + T, 

where T is the truncation error. The formula is to be exact (i.e., T = 0) when f(x) 
belongs to a function space with basis 

(2) {l , cos xx, * * , cos (n - 1)cox}. 

Note that we have assumed f(x) is an even function in writing (2). We can append 
a set of linearly independent odd functions to obtain a basis set for a more general 
integrand, say g(x). The choice of the odd basis set is arbitrary since the integration 
is over symmetric limits. We will discuss two choices. The parameter w, which may 
be complex, is to be chosen for convenience in each problem. We will only consider X 

real with X E- [0, 7r] or imaginary with (o = ia and a. E [0, oo). 
First suppose that 

n-I n-1 

g(x)= E a cos rcox + Eb, sin rcox. 
0 1 

The reduction to Gaussian form in this case is essentially given in [1], but we now 
incorporate the parameter co into the approximant rather than parametrize the 
range of integration. Writing u = tan (cox/2)/t with t = tan (X/2) and noting that 
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sin wx = 2tu/(1 + t2u2) and cos xx = (1 - t2u2)/(l + t2u2), we find 
g(x) = Q(u; w)/(l + t2u2'f'- with Q a polynomial in u of order 2n - 2. Consequently, 

(3) f g(x) dx - ( + t22 
It follows from [2, pp. 331-334] that the integral on the right in (3) can be evaluated 
by an n-point quadrature formula with nodes at the zeros of qn(Y; co, n), where { q, } is 
the set of monic polynomials orthogonal with respect to the inner product 

4) (F, G) _I F(u) I G(u) du 

Another choice of the set of basis functions leads to a more convenient reduction 
to Gaussian form. To motivate our choice note that the basis (2) is not convenient 
for small values of w because it tends to be linearly dependent. An alternate choice 
of the even basis functions is provided by the 

LEMMA. For any 4 and integer m 

[Cos( )]2m_22m+ {cos mq$ + (2 C)os (m- + + 2 

where (z) are the binomial coefficients. (Cf. [3, p. 461).) 
If we set = 7r- cox and note that cos(w/2- 6) = sin and cos (k7r - 6) 

(-1)k cos ,t we find (2) is taken into a new basis set by the linear transformation 

[sin (COX/2)]2~ = 2(2s)-2m{(, l) cos mwx + * +! ( m)}' 

with s = sin (co/2) and m = 0, 1, * , n - 1. An obvious choice of a basis for the 
odd components of g is now the odd powers of sin (cox/2)/s of order one through 
2n - 3. Then as -c1> 0 we find the complete basis set 

(5) { 1, - - * , [sin (?x/2)/s]2} - {21, x, * * *, x2n} + O(Ic,,12), 

and it obviously remains linearly independent. 
Gautschi [4] has previously used this method to replace the basis (2) by a basis 

differing from (5) only by a multiplicative constant. We would like to thank the 
referee for pointing this out. 

Suppose that g(x) = EOU2 cj[sin (cox/2)]T. Introducing y = sin (wx/2)/s reduces 
g to a polynomial in y of order 2n - 2, say P(y; w), and our integral becomes 

(6) f g(x) dx = u r P(y2;)1dy2 

The integral on the right in (6) is again of Gaussian form. Let {pr} be the set of monic 
polynomials orthogonal with respect to the inner product 

(7) (F, G) = J'~~~~ F(y> -G(y) dy 
(7) (F, G)- = 

I (I - s 2y2)1/2* 

Then from [2, pp. 331-334] we know it can be evaluated by an n-point quadrature 
formula with nodes at the zeros of pn(y; co,). 
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Note that although the discussion has proceeded as if X were real, the inner prod- 
ucts (4) and (7) remain real for co imaginary. It follows that q,, and p,, will have n real, 
simple zeros in (-1, 1) for co real or imaginary. 

The polynomial sets { q, } and {prp} are fundamentally different. They are connected 
only by the fact that the zeros of qn(u; w, n) and the zeros of p,,(Y; W) must lead to the 
same nodes xi in (1). This establishes the following relationship between corresponding 
zeros of the two polynomials: 

(8) u, = yi cos (co/2)/[1 -s2y2]l'2 

Note that ui vanishes like cos (w/2) as w > - ?r, and u, -*> y; as co ->0. We will prefer 
to work with the set {p. }. 

Before considering the actual construction of p,,, let us study the quadrature 
formula qualitatively by allowing w to approach special values. The form of the 
inner product (7) makes rather obvious the first theorem. 

THEOREM 1. Let { Pr } and { Tr } be the set of monic Legendre and Chebyshev poly- 
nomials, respectively. Then for any integer r and with y = sin (wx/2)/sin (W/2), as 
w 0 along the real or imaginary axis 

Pr(Y; C) = P,(X) + 0(1w 2), 

and as co-> r along the real axis 

P,(y; CO) = T,(y) + 0(r _ -)2 

Proof. The theorem follows by applying the Gram-Schmidt procedure, noting 
that the inner product (7) 

(F, G) = F(y) G(y) dy + O(Ic,21) as jwj -- 0 

and 

(F, G) = F(y)lG(y) dy + 0(7r - a)2 as x->r, 

to show that Pr -* PrO() or TX(y) in the respective cases. We then need only note (5) 
to show that P,(y) = Pr(x) + 0(lcoI2) as 1X1 -*> 0. 

It follows from this theorem that Legendre quadrature is a special case of the 
quadrature formula (1). We also know from [5] that (1) should reduce to the trape- 
zoidal rule as X -> ir. To show this is true let us note that the roots of the nth order 
Chebyshev polynomial are cos [(2m - 1)r/2n], m = 1, 2, . , n. Thus, for co = X 

the nodes in (1) become 

2 
= il { [(2m - l = n + 1 2m 

xm 
- 

T 
n 

lcosl 2n JJ-n 

These are precisely the nodes of the trapezoidal rule. 
It is interesting to note that the nodes of the trapezoidal rule are more centrally 

located than the Legendre nodes. This realization together with extensive numerical 
experiments leads us to make the following conjecture. 

Conjecture 1. Each nonzero node xi of the quadrature formula (1) moves mono- 
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tonically inward from the Legendre node to the trapezoidal rule node as co increases 
from zero to ir. The movement is not strictly monotone at w = 0. 

No counterexample to this conjecture has been found in a set of tests where n 
ranged from 2 to 10 and X from 10-' to 7r - 10'. The exceptional nature of the 
case w = 0 is shown in 

THEOREM 2. Each node xi in (1), considered as afunction of X, is stationary at co = 0. 
Proof. We have, from Theorem l, pn = P. + c&p + O(lco I'), where p(x) is a poly- 

nomial. Let Zj be a zero of P,(x) and z; + 6x, be a zero of pn. Then, 

Pn(Zi + ax;) = P,(zi + axi) + op(Zi + ax,) + O(j6W1)4 = 0 

Since Pn(z;) = 0 and P'(zi) $ 0 we have Ax; = -co2p(zi)/P,(z,) + O(Iwl'), and 
hence dx,/d& = 0 at co = 0. 

Since the nodes are stationary with respect to w at co = 0, we can assume their 
variation with co is slow for small lcwl. This means there is little purpose in using (l) 
for small k' j; we would get almost the same result by Legendre quadrature. In the 
case of trigonometric quadrature this conclusion is intuitively reasonable. If the 
assumed period of the integrand is very long relative to the range of integration, it is 
easy to believe the (aperiodic) polynomial approximant would do as well as (1). 

We will next consider the behavior of our quadrature formula with w = ia as 
a -+ c. The treatment will be based on the system of equations given by the method 
of undetermined coefficients. Before deriving these equations it is convenient to 
note that (1) must be a symmetric quadrature formula because the integral is over 
symmetric limits. Thus, defining N as the greatest integer less than or equal to n/2, 
(1) can be rewritten as 

p1 ~~N 
(9) f(x) dx E ,ff(xj) + f(-xi)] for n = 2N 

and 
1 N 

f(x) dx = 3of(O) + f3j[f(x,) + f(-x,)] for n = 2N + 1. 

We will choose the x, > 0. Recall that these formulas are to be exact when f E 1, 
cosh ox, . , cosh (n - l)ox}. Substituting each basis function into (9) then gives 
the systems of equations 

N 
sinhs moV- 

IVsr 

(1 0) sih~ii= # j3 cosh max1, m = 0, 1, .,2N - 1, 

for n even and 

sinh m 1 
N 

(11) snhm= 2j + E fli cosh max, m = 0,1, * *,2N, 
MO! 2 i-i 

for n odd. 
We can now proceed to develop the asymptotic solution to these equations as 

ff co. The main result is given in the following theorem. 
THEOREM 3. Let xl = mini (xi). Then as o- o we have for n = 2N 

=1 In (N2cv) + O(_-2), 
0T 
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andfor n = 2N + I 

xI = I - K/a + O(eo') 

where K > 0 is a constant depending only on N. 
Consider first the case n even. As a -+ o we have sinh oax ' cosh a77 se'" for 

any v > 0. Thus, the dominant solution to (10) is obtained from 
N l N 

1 = 1Bj, - Z= ~ , ij, m = 1, 2, ,2N- 1, 

where i = exp (a(x, - 1)). It should be noted this is precisely the system of equa- 
tions which results from the method of undetermined coefficients applied to (9) with 
f E {lI, e?xs , * e(2NIl)ax. It then follows from [1] that the , EE (0, 1) and are 
distinct. We can reduce the problem of solving this system to finding the roots 4, of 
a polynomial using Prony's method of exponential interpolation [6, p. 378]. The f3 
are then obtained by solving a system of linear equations with a Vandermonde co- 
efficient matrix (which is nonsingular). 

Suppose the polynomial is a,o$N + ... + al4 + 1. Then the coefficients must 
satisfy the system of linear equations 

N 

1j Hija, = -pi, i= 1, , N, 
i-1 

where Hi, = 1 ,'(i + j - 1) are the elements of an Nth order Hilbert matrix, p, = a, 
and p, = I /(i - 1) for i > 2. The inverse of the Hilbert matrix is known to have 
elements [7] 

H. I)i+i (N + i - 1)! (N +j - 1)! t ~~(i + i- 1)[(i _1)! (j !2( )! (N +2J j)t 

Note that all the ai = O(a) as a c. Fromll this it is evident that there are no roots 
of the polynomial going to zero faster than 1/0l. Suppose there is a root 4, = C/a + 
O(1/ a2). Then since a = -N 2a + 0(1) the polynomial equation is 1 -N2C + 
0(l/a) = 0, whence C = 1/N2. There is no other root of order I/la; as a matter of 
fact, the remaining 4, = 0(1). Expressing xl in terms of 46 then gives the result 
stated in the theorem. 

In the case of n odd the dominant system of equations derived from (11) is 

00 = 2 - i . = i m = 1, 2,* , 2N. 

In this case the system of equations involving the qpi result by applying the method of 
undetermined coefficients to (9) with f E {e?, * * * , e2NMa , and so we know from [1] 
that the oi are distinct and lie in the interval (0, 1). We again use Prony's method to 
derive a polynomial with roots 4i, but in this case it is convenient to assume that the 
polynomial is 4, + &NONl + + &20 + &. The coefficients then satisfy 

I1 

L Hi&j -N+ i i=1* *,N. 

Note that the coefficients depend only on N. Let 4, be the smallest root of the poly- 
nomial and define K = ln (1 /4,) > 0. The result stated in the theorem follows, 
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It is interesting to note that the Christoffel numbers f - =0(1 /a) for j > I and 
= 2 - 0(l/l-) with n odd, whereas the f3 = 0(1) for n even. 
We see from this theorem that the nonzero nodes of the quadrature formula (1) 

tend to coalesce at the endpoints of the interval as o- -> C. Thus, for any sufficiently 
large ar the nodes in (1) must lie outside the Legendre nodes. This leads us to 

Conjecture 2. Each nonzero node xi of the quadrature formula (1) moves mono- 
tonically outward from the Legendre node toward the endpoints of the interval 
[-1, 1] as a increases from zero toward infinity. The movement is not strictly mono- 
tone at a- = 0 due to Theorem 2. 

This conjecture has also been tested with numerical experiments. 
Having discussed in some detail the qualitative nature of the quadrature formula, 

let us now turn to the actual construction of the nodes and weights. We will treat w as 
real in the development, though the results are valid also for imaginary w. The scheme 
we propose is based on the three-term recursion relation 

Pr+1 = YPr - CrPr_1 

with po = 1, p, = y, and Cr (Prr Pr)/(Pr-l, Pr-i), which follows from the theory 
of orthogonal polynomials. 

Consideration of the recursion relation shows that the polynomials are of the form 

P2 
2 

= Y (i + A 2y-2 + (2j+ A2i)Y + A(2 j) 

P21-Y +A1 y + + 2 y+ 1 , 

P21+1 = Y[Y21 + B 2+l))y2V-2 + * + B(2i+l)y2 +- B(2+1)]. 

We can now substitute polynomials of this form into the recursion relation and col- 
lect like powers of y to show that 

A(2i)= B 2'-l) -C2_.1 A 2i-2) i* 

(21+1) = (2i) 2-1) B, Al - 2 

where we define B"2m+l) -0 for all m > 0. Since (Pr, Pr) (Yr Pr) we can also 
evaluate the Cr in terms of the polynomial coefficients once we know the inner prod- 
ucts (1, 1), * * *, (y, yfl)* In this way finding the coefficients of pn(y) is reduced to a 
numerical problem. 

The inner products can also be evaluated recursively. If we let F = G = 
m = 0 1, ... , n, in (7) and make the transformation y = s-1 sin 4 we find 

(ym ym)= -2m-s f sin2m d 2 - s2 (2m - 1)(y'ml, y'm-) - 2 cos 

after an integration by parts. For large w it is appropriate to begin the recursion with 
(1, 1) = c/s, but for small co a forward recursion suffers large round-off errors. We 
can avoid the difficulty by using a backward recursion for small w with the initial 
value (yR, yfn) obtained by an alternate procedure. For example, we can use the back- 
ward recursion relation to show that 

( Yf n) 2 cos (a/2) f1 + 2n + 2 s2 + 2n + 2 2n + 4 S4 + 
2o I ie is t 3 n + 32 32n+5 

for IsjI < I. Note that the series is the hypergeometric function F(n + 1, 1; n + 3/2; S2). 
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The inner product (yf, O) can also be evaluated by Gauss-Legendre quadrature for 
small s, since the integrand is well approximated by a polynomial. 

After the coefficients of pnJ(y) have been found, the polynomial can be factored to 
determine its zeros y3. The nodes and Christoffel numbers are then 

2 . -1 2s (Pn-1 pr-1) 
xi = -s (Sy 

In summary, we believe that the parametrized quadrature formula we have been 
discussing provides a valuable unifying concept as mentioned in the introduction. 
Furthermore, its flexibility should make it possible on occasion to obtain an optimal 
matching of formula to problem. 

Boeing Company 
Renton, Washington 98055 
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